Dynamical System Proof of Infinitude of Primes

Harikrishnan NB

March 11, 2021

1 Introduction

This is a replication of the dynamical system proof of infinitude of primes by Dr. Kishor G Bhat, Post Doctoral Fellow, St. John's Research Institute (Alumnus of NIAS). I thank Dr. Nithin Nagaraj (Associate professor, NIAS) and Harikumar K for helping me understand the proof.

2 Definitions

<u>Definition 1</u>: A map is a function whose domain and range are the same. Let $T(\cdot)$ be a map, the orbit (trajectory) of x under the map $T(\cdot)$ is denoted as $x \to T(x) \to T^2(x) \to \dots T^k(x)$, where x is the initial value of the map $T(\cdot)$ [1].

Example of a Map: We consider a map $T_k(x_{n-1}) = kx_{n-1} \mod (1) = kx_{n-1} - [kx_{n-1}], [0,1) \to [0,1), k$ is a positive integer greater than 1 ($[kx_{n-1}]$ represents the integer part of kx_{n-1}).

For k = 2, we get the following map: $T_2(x_{n-1}) = 2x_{n-1} - [2x_{n-1}]$. The pictorial representation of the map is provided in Figure 1. This is a piece wise

Figure 1: $T_2(x_{n-1}) = 2x_{n-1} - [2x_{n-1}].$

linear map where $0 \le x_{n-1} < 1$ and $0 \le T_2(x_{n-1}) < 1$. The trajectory starting from x_0 is provided as follows:

$$x_0 \to x_1 \to \dots \to x_n \to \dots \tag{1}$$

An example of the trajectory starting from $x_0 = 0.01$ for the $T_2(x_{n-1}) = 2x_{n-1} - [2x_{n-1}]$ map is provided in Figure 2.

Figure 2: Trajectory starting from $x_0 = 0.01$ for the $T_2(x_{n-1}) = 2x_{n-1} - [2x_{n-1}]$ map.

What are the possible patterns in the trajectory of $T_2(x_{n-1})$ map ?

- Periodic with period-1 $(x_0 = 0)$.
- Periodic with period-k ($x_0 = 0.8$, k = 3).
- Eventually periodic $(x_0 = 0.05)$.
- Eventually terminating to zero $(x_0 = 0.125)$.
- Non-periodic $(x_0 = \frac{\sqrt{2}}{10}).$

We will formally define the definition of period-1/fixed points and eventually periodic points of a map.

<u>Definition-2</u>: Fixed Point or Period-1 point of a map: A point p is a fixed point or period 1 point of a map $(T(\cdot))$ if T(p) = p.

<u>Definition-3</u>: Eventually Periodic Point: A point x is an eventually periodic point with period l > 0 of a map $T(\cdot)$, if $T^{n+l}(x) = T^n(x), \forall n \ge N$ and $N \in Z^+$, and l is the smallest such positive number.

<u>Definition-4</u>: Fundamental Theorem of Arithmetic: The fundamental theorem of arithmetic states that every positive integer (except the number 1) can be represented in exactly one way apart from rearrangements as a product of one or more primes [2].

3 Lemma

<u>Lemma 1</u>: Given that the map $T_n(x) = nx \mod (1) = nx - [nx], x \in [0, 1),$ n > 1 and $n \in \mathbb{Z}^+$, where $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, then $T_n(x) \in [0, 1)$.

<u>Proof</u>: By definition of a number (nx), we have

$$nx = [nx] + d, 0 \le d < 1, \tag{2}$$

$$nx - [nx] = d, 0 \le d < 1, \tag{3}$$

$$0 \le nx - [nx] < 1,\tag{4}$$

$$0 \le T_n(x) < 1. \tag{5}$$

(6)

Hence proved.

<u>Lemma 2</u>: If $x = \frac{p}{q}$, where $p \in \mathbf{Z}^+ \cup \{0\}$, $q \in \mathbf{Z}^+$, gcd(p,q) = 1 and p < q, then $T_n^k(x) : [0,1) \to [0,1)$ is eventually periodic.

 $\underline{\text{Proof}}$:

$$T_n\left(\frac{p}{q}\right) = \frac{np}{q} - \left[\frac{np}{q}\right].$$
(7)

From Lemma 1, we have $0 \le T_n(x) < 1$. This implies $0 \le T_n\left(\frac{p}{q}\right) < 1$.

$$T_n\left(\frac{p}{q}\right) = \frac{np}{q} - \left[\frac{np}{q}\right].$$
(8)

Let $\left[\frac{np}{q}\right] = t_1$, where $t_1 \in \mathbf{Z}^+ \cup \{0\}$. Now the above equation is of the form :

$$T_n\left(\frac{p}{q}\right) = \frac{np}{q} - t_1 = \frac{np - t_1q}{q}.$$
(9)

From Lemma 1, we have $0 \leq T_n \left(\frac{p}{q}\right) < 1$, this implies $0 \leq \frac{np-t_1q}{q} < 1$. Therefore, $np - t_1q < q$. Let us denote $np - t_1q$ as z_1 . Therefore, $T_n \left(\frac{p}{q}\right) = \frac{z_1}{q}$, where $z_1 \in \mathbb{Z}^+ \cup \{0\}$ and $z_1 < q$ (From Lemma 1). Now,

$$T_n\left(\frac{z_1}{q}\right) = \frac{nz_1}{q} - \left[\frac{nz_1}{q}\right].$$
(10)

Let us denote $\left[\frac{nz_1}{q}\right] = t_2$, this when substituted in the above equation gives the following:

$$T_n\left(\frac{z_1}{q}\right) = \frac{nz_1 - t_2q}{q}.$$
(11)

If we substitute, $nz_1 - tq = z_2$, we have $T_n\left(\frac{z_1}{q}\right) = \frac{z_2}{q}$, where $z_2 \in \mathbf{Z}^+ \cup \{0\}$ and $z_2 < q$ (From Lemma 1).

From the above we can conclude that if we iterate the map $T_n(x) = nx - [nx]$ from $x = \frac{p}{q}$, we have the following:

$$\frac{p}{q} \to \frac{z_1}{q} \to \frac{z_2}{q} \to \dots \to \frac{z_i}{q}.$$
 (12)

where $\forall i, z_i < q$, which implies $0 \le z_i < q$ (From Lemma 1). $\forall i, z_i < q$ where $z_i \in \mathbf{Z}^+ \cup \{0\}$ and $q \in \mathbf{Z}^+$ implies that after finite number iterations z_i has to repeat because z_i can take only finite set of values $(0 \le z_i \le q - 1)$. This repetition of z_i proves that after finite number of iterations $T_n^k \begin{pmatrix} p \\ q \end{pmatrix}$ becomes periodic. Hence, the Lemma 2 is proved.

Lemma 3: If $n = p_1 p_2 \dots p_k$, where $p_i \in \mathbf{P}$ (set of all primes) and $q = p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}$ where $b_i \in \mathbf{Z}^+ \cup \{0\}$ then $T_n\left(\frac{t}{q}\right) : [0,1) \to [0,1)$ is eventually terminating to zero where $0 \le t < q$.

 $\underline{\text{Proof}}$:

$$T_n\left(\frac{t}{q}\right) = \frac{nt}{q} - \left[\frac{nt}{q}\right],\tag{13}$$

$$T_n\left(\frac{t}{q}\right) = \frac{p_1 p_2 \dots p_k t}{p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}} - \left[\frac{p_1 p_2 \dots p_k t}{p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}}\right],\tag{14}$$

We denote $\left[\frac{p_1p_2...p_kt}{p_1^{b_1}p_2^{b_2}...p_k^{b_k}}\right]$ as c_1 .

$$T_n\left(\frac{t}{q}\right) = \frac{t}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}} - c_1,$$
(16)

$$T_n\left(\frac{t}{q}\right) = \frac{t - c_1(p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1})}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}},$$
(17)

(18)

We denote $t - c_1(p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1})$ as z_1 .

$$T_n\left(\frac{t}{q}\right) = \frac{z_1}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}},\tag{19}$$

On further iteration, we get the following:

$$T\left(\frac{z_1}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}}\right) = \frac{p_1p_2\dots p_kz_1}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}} - \left[\frac{p_1p_2\dots p_kz_1}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}}\right], \quad (20)$$

Let $\left[\frac{p_1p_2\dots p_kz_1}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}}\right]$ be denoted as c_2 . $T\left(\frac{z_1}{p_1^{b_1-1}p_2^{b_2-1}\dots p_l^{b_k-1}}\right) = \frac{z_1}{p_1^{b_1-2}p_2^{b_2-2}\dots p_l^{b_k-2}} - c_2,$ (21)

$$T\left(\frac{z_1}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}}\right) = \frac{z_1 - c_2(p_1^{b_1-2}p_2^{b_2-2}\dots p_k^{b_k-2})}{p_1^{b_1-2}p_2^{b_2-2}\dots p_k^{b_k-2}},$$
(22)

We denote $z_1 - c_2(p_1^{b_1-2}p_2^{b_2-2}\dots p_k^{b_k-2})$ as z_2 .

$$T\left(\frac{z_1}{p_1^{b_1-1}p_2^{b_2-1}\dots p_k^{b_k-1}}\right) = \frac{z_2}{p_1^{b_1-2}p_2^{b_2-2}\dots p_k^{b_k-2}},$$
(24)

The iterates are of the following form:

$$\frac{t}{p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}} \to \frac{z_1}{p_1^{b_1 - 1} p_2^{b_2 - 1} \dots p_k^{b_k - 1}} \to \frac{z_2}{p_1^{b_1 - 2} p_2^{b_2 - 2} \dots p_k^{b_k - 2}} \to \dots$$
(25)

Let $b_i = \max(b_1, b_2, \dots, b_k)$. Therefore after $b_i - 1$, we have the following:

$$T_n^{b_i-1}\left(\frac{t}{p_1^{b_1}p_2^{b_2}\dots p_k^{b_k}}\right) = \frac{z_{b_i-1}}{p_i},\tag{26}$$

On one more iteration, we get the following:

$$T\left(\frac{z_{b_i-1}}{p_i}\right) = \frac{nz_{b_i-1}}{p_i} - \left[\frac{nz_{b_i-1}}{p_i}\right],\qquad(27)$$

$$=\frac{p_1p_2\dots p_{i-1}p_ip_{i+1}\dots p_kz_{b_i-1}}{p_i} - \left[\frac{p_1p_2\dots p_{i-1}p_ip_{i+1}\dots p_kz_{b_i-1}}{p_i}\right], \quad (28)$$

$$= (p_1 p_2 \dots p_{i-1} p_{i+1} \dots p_k z_{b_i-1}) - (p_1 p_2 \dots p_{i-1} p_{i+1} \dots p_k z_{b_i-1}) = 0.$$
(29)

We show that after b_i iterations, $T_n(\frac{t}{q})$ is eventually terminating to zero. Hence proved.

<u>Lemma 4</u>: If there is a period - 1 orbit for the map $T(\cdot): [0,1) \to [0,1)$ then the initial value is of the form $\frac{p}{q}$. <u>Proof</u>: By definition of fixed point or period - 1 point we have the following:

$$T_n(x) = x, (30)$$

$$nx - [nx] = x, (31)$$

$$nx - x = [nx], \tag{32}$$

$$x(n-1) = [nx],$$
(33)

$$x = \frac{[nx]}{n-1}.\tag{34}$$

From lemma-2, if $x = \frac{p}{q}$ then $T_n^k(x)$ is eventually periodic. But for the following values of x, iterates of $T_n(x)$ gives period-1 orbit.

$$x = \left\{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-2}{n-1}\right\}.$$
(35)

There are in total 'n-1' fixed points and all of them are of the form $\frac{p}{q}$. Out of (n-1) fixed points, there are (n-2) fixed points of the form $\frac{p}{q}$ and which does not terminate to zero.

4 Main Proof

4.1**Proof by Contradiction of Infinitude of Primes**

Assumption: Let us assume there are only finite number of primes and the set of finite number of primes be denoted as $P = \{p_1, p_2, \dots, p_k\}.$

Now consider n as the product of all primes in the set P and q as follows:

$$n = p_1 p_2 p_3 \dots p_k, \tag{36}$$

$$q = p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}.$$
(37)

From Lemma 3, $T_n(\frac{t}{q})$ is eventually terminating to zero, $0 \le t < q$. From Lemma 4, the fixed points of $T_n(x)$ are the form $\frac{k}{n-1}$, $0 \le k \le n-2$. Using Fundamental theorem of arithmetic, n-1 can be written as follows:

$$n - 1 = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}. aga{38}$$

From Lemma 3, $T_n\left(\frac{k}{n-1}\right) = T_n\left(\frac{k}{p_1^{r_1}p_2^{r_2}.p_k^{r_k}}\right)$ should actually terminate to zero. But from Lemma 4, there are (n-2) fixed points of the form $\frac{p}{q}$ and not terminating to zero. Therefore the following relation is not true:

$$n-1 = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}.$$
(39)

Hence the assumption that the number of prime numbers are finite is false.

References

- [1] Kathleen T Alligood, Tim D Sauer, and James A Yorke. Chaos. Springer, 1996.
- [2] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An introduction to the theory of numbers. John Wiley & Sons, 1991.