Dynamical System Proof of Infinitude of Primes

Harikrishnan NB

March 11, 2021

1 Introduction

This is a replication of the dynamical system proof of infinitude of primes by Dr. Kishor G Bhat, Post Doctoral Fellow, St. John's Research Institute (Alumnus of NIAS). I thank Dr. Nithin Nagaraj (Associate professor, NIAS) and Harikumar K for helping me understand the proof.

2 Definitions

Definition 1: A map is a function whose domain and range are the same. Let $T(\cdot)$ be a map, the orbit (trajectory) of x under the map $T(\cdot)$ is denoted as $x \rightarrow T(x) \rightarrow T^{2}(x) \rightarrow \ldots T^{k}(x)$, where x is the initial value of the map $T(\cdot) 1$.

Example of a Map: We consider a map $T_{k}\left(x_{n-1}\right)=k x_{n-1} \bmod (1)=$ $k x_{n-1}-\left[k x_{n-1}\right],[0,1) \rightarrow[0,1), k$ is a positive integer greater than $1\left(\left[k x_{n-1}\right]\right.$ represents the integer part of $\left.k x_{n-1}\right)$.

For $k=2$, we get the following map: $T_{2}\left(x_{n-1}\right)=2 x_{n-1}-\left[2 x_{n-1}\right]$. The pictorial representation of the map is provided in Figure 1. This is a piece wise

Figure 1: $T_{2}\left(x_{n-1}\right)=2 x_{n-1}-\left[2 x_{n-1}\right]$.
linear map where $0 \leq x_{n-1}<1$ and $0 \leq T_{2}\left(x_{n-1}\right)<1$. The trajectory starting from x_{0} is provided as follows:

$$
\begin{equation*}
x_{0} \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{n} \rightarrow \ldots \tag{1}
\end{equation*}
$$

An example of the trajectory starting from $x_{0}=0.01$ for the $T_{2}\left(x_{n-1}\right)=$ $2 x_{n-1}-\left[2 x_{n-1}\right]$ map is provided in Figure 2 .

Figure 2: Trajectory starting from $x_{0}=0.01$ for the $T_{2}\left(x_{n-1}\right)=2 x_{n-1}-\left[2 x_{n-1}\right]$ map.
$\underline{\text { What are the possible patterns in the trajectory of } T_{2}\left(x_{n-1}\right) \text { map ? }}$

- Periodic with period-1 $\left(x_{0}=0\right)$.
- Periodic with period-k $\left(x_{0}=0.8, \mathrm{k}=3\right)$.
- Eventually periodic $\left(x_{0}=0.05\right)$.
- Eventually terminating to zero ($x_{0}=0.125$).
- Non-periodic $\left(x_{0}=\frac{\sqrt{2}}{10}\right)$.

We will formally define the definition of period-1/fixed points and eventually periodic points of a map.

Definition-2: Fixed Point or Period-1 point of a map: A point p is a fixed point or period 1 point of a map $(T(\cdot))$ if $T(p)=p$.

Definition-3: Eventually Periodic Point: A point x is an eventually periodic point with period $l>0$ of a map $T(\cdot)$, if $T^{n+l}(x)=T^{n}(x), \forall n \geq N$ and $N \in Z^{+}$, and l is the smallest such positive number.

Definition-4: Fundamental Theorem of Arithmetic: The fundamental theorem of arithmetic states that every positive integer (except the number 1) can be represented in exactly one way apart from rearrangements as a product of one or more primes 2 .

3 Lemma

Lemma 1: Given that the map $T_{n}(x)=n x \bmod (1)=n x-[n x], x \in[0,1)$, $n>1$ and $n \in \mathbf{Z}^{+}$, where $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, then $T_{n}(x) \in[0,1)$.

Proof: By definition of a number $(n x)$, we have

$$
\begin{gather*}
n x=[n x]+d, 0 \leq d<1, \tag{2}\\
n x-[n x]=d, 0 \leq d<1, \tag{3}\\
0 \leq n x-[n x]<1, \tag{4}\\
0 \leq T_{n}(x)<1 . \tag{5}
\end{gather*}
$$

Hence proved.
Lemma 2: If $x=\frac{p}{q}$, where $p \in \mathbf{Z}^{+} \cup\{0\}, q \in \mathbf{Z}^{+}, \operatorname{gcd}(p, q)=1$ and $p<q$, then $T_{n}^{k}(x):[0,1) \rightarrow[0,1)$ is eventually periodic.

Proof:

$$
\begin{equation*}
T_{n}\left(\frac{p}{q}\right)=\frac{n p}{q}-\left[\frac{n p}{q}\right] . \tag{7}
\end{equation*}
$$

From Lemma 1, we have $0 \leq T_{n}(x)<1$. This implies $0 \leq T_{n}\left(\frac{p}{q}\right)<1$.

$$
\begin{equation*}
T_{n}\left(\frac{p}{q}\right)=\frac{n p}{q}-\left[\frac{n p}{q}\right] . \tag{8}
\end{equation*}
$$

Let $\left[\frac{n p}{q}\right]=t_{1}$, where $t_{1} \in \mathbf{Z}^{+} \cup\{0\}$. Now the above equation is of the form :

$$
\begin{equation*}
T_{n}\left(\frac{p}{q}\right)=\frac{n p}{q}-t_{1}=\frac{n p-t_{1} q}{q} . \tag{9}
\end{equation*}
$$

From Lemma 1, we have $0 \leq T_{n}\left(\frac{p}{q}\right)<1$, this implies $0 \leq \frac{n p-t_{1} q}{q}<1$. Therefore, $n p-t_{1} q<q$. Let us denote $n p-t_{1} q$ as z_{1}. Therefore, $T_{n}\left(\frac{p}{q}\right)=\frac{z_{1}}{q}$, where $z_{1} \in \mathbf{Z}^{+} \cup\{0\}$ and $z_{1}<q($ From Lemma 1).

Now,

$$
\begin{equation*}
T_{n}\left(\frac{z_{1}}{q}\right)=\frac{n z_{1}}{q}-\left[\frac{n z_{1}}{q}\right] . \tag{10}
\end{equation*}
$$

Let us denote $\left[\frac{n z_{1}}{q}\right]=t_{2}$, this when substituted in the above equation gives the following:

$$
\begin{equation*}
T_{n}\left(\frac{z_{1}}{q}\right)=\frac{n z_{1}-t_{2} q}{q} . \tag{11}
\end{equation*}
$$

If we substitute, $n z_{1}-t q=z_{2}$, we have $T_{n}\left(\frac{z_{1}}{q}\right)=\frac{z_{2}}{q}$, where $z_{2} \in \mathbf{Z}^{+} \cup\{0\}$ and $z_{2}<q$ (From Lemma 1).

From the above we can conclude that if we iterate the map $T_{n}(x)=n x-[n x]$ from $x=\frac{p}{q}$, we have the following:

$$
\begin{equation*}
\frac{p}{q} \rightarrow \frac{z_{1}}{q} \rightarrow \frac{z_{2}}{q} \rightarrow \ldots \rightarrow \frac{z_{i}}{q} \tag{12}
\end{equation*}
$$

where $\forall i, z_{i}<q$, which implies $0 \leq z_{i}<q$ (From Lemma 1). $\forall i, z_{i}<q$ where $z_{i} \in \mathbf{Z}^{+} \cup\{0\}$ and $q \in \mathbf{Z}^{+}$implies that after finite number iterations z_{i} has to repeat because z_{i} can take only finite set of values $\left(0 \leq z_{i} \leq q-1\right)$. This repetition of z_{i} proves that after finite number of iterations $T_{n}^{k}\left(\frac{p}{q}\right)$ becomes periodic. Hence, the Lemma 2 is proved.

Lemma 3: If $n=p_{1} p_{2} \ldots p_{k}$, where $p_{i} \in \mathbf{P}$ (set of all primes) and $q=$ $p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}$ where $b_{i} \in \mathbf{Z}^{+} \cup\{0\}$ then $T_{n}\left(\frac{t}{q}\right):[0,1) \rightarrow[0,1)$ is eventually terminating to zero where $0 \leq t<q$.

Proof:

$$
\begin{array}{r}
T_{n}\left(\frac{t}{q}\right)=\frac{n t}{q}-\left[\frac{n t}{q}\right] \\
T_{n}\left(\frac{t}{q}\right)=\frac{p_{1} p_{2} \ldots p_{k} t}{p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}}-\left[\frac{p_{1} p_{2} \ldots p_{k} t}{p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}}\right] \tag{14}
\end{array}
$$

We denote $\left[\frac{p_{1} p_{2} \ldots p_{k} t}{p_{1}^{b_{1}^{1}} p_{2}^{b_{2}} \ldots p_{k}^{b}}\right]$ as c_{1}.

$$
\begin{gather*}
T_{n}\left(\frac{t}{q}\right)=\frac{t}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}}-c_{1} \tag{16}\\
T_{n}\left(\frac{t}{q}\right)=\frac{t-c_{1}\left(p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}\right)}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}} \tag{17}
\end{gather*}
$$

We denote $t-c_{1}\left(p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}\right)$ as z_{1}.

$$
\begin{equation*}
T_{n}\left(\frac{t}{q}\right)=\frac{z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}} \tag{19}
\end{equation*}
$$

On further iteration, we get the following:

$$
\begin{equation*}
T\left(\frac{z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}}\right)=\frac{p_{1} p_{2} \ldots p_{k} z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}}-\left[\frac{p_{1} p_{2} \ldots p_{k} z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}}\right] \tag{20}
\end{equation*}
$$

Let $\left[\frac{p_{1} p_{2} \ldots p_{k} z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}}\right]$ be denoted as c_{2}.

$$
\begin{array}{r}
T\left(\frac{z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}}\right)=\frac{z_{1}}{p_{1}^{b_{1}-2} p_{2}^{b_{2}-2} \ldots p_{k}^{b_{k}-2}}-c_{2} \\
T\left(\frac{z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}}\right)=\frac{z_{1}-c_{2}\left(p_{1}^{b_{1}-2} p_{2}^{b_{2}-2} \ldots p_{k}^{b_{k}-2}\right)}{p_{1}^{b_{1}-2} p_{2}^{b_{2}-2} \ldots p_{k}^{b_{k}-2}} \tag{22}
\end{array}
$$

We denote $z_{1}-c_{2}\left(p_{1}^{b_{1}-2} p_{2}^{b_{2}-2} \ldots p_{k}^{b_{k}-2}\right)$ as z_{2}.

$$
\begin{equation*}
T\left(\frac{z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}}\right)=\frac{z_{2}}{p_{1}^{b_{1}-2} p_{2}^{b_{2}-2} \ldots p_{k}^{b_{k}-2}} \tag{24}
\end{equation*}
$$

The iterates are of the following form:

$$
\begin{equation*}
\frac{t}{p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}} \rightarrow \frac{z_{1}}{p_{1}^{b_{1}-1} p_{2}^{b_{2}-1} \ldots p_{k}^{b_{k}-1}} \rightarrow \frac{z_{2}}{p_{1}^{b_{1}-2} p_{2}^{b_{2}-2} \ldots p_{k}^{b_{k}-2}} \rightarrow \ldots \tag{25}
\end{equation*}
$$

Let $b_{i}=\max \left(b_{1}, b_{2}, \ldots b_{k}\right)$. Therefore after $b_{i}-1$, we have the following:

$$
\begin{equation*}
T_{n}^{b_{i}-1}\left(\frac{t}{p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}}\right)=\frac{z_{b_{i}-1}}{p_{i}} \tag{26}
\end{equation*}
$$

On one more iteration, we get the following:

$$
\begin{array}{r}
T\left(\frac{z_{b_{i}-1}}{p_{i}}\right)=\frac{n z_{b_{i}-1}}{p_{i}}-\left[\frac{n z_{b_{i}-1}}{p_{i}}\right], \\
=\frac{p_{1} p_{2} \ldots p_{i-1} p_{i} p_{i+1} \ldots p_{k} z_{b_{i}-1}}{p_{i}}-\left[\frac{p_{1} p_{2} \ldots p_{i-1} p_{i} p_{i+1} \ldots p_{k} z_{b_{i}-1}}{p_{i}}\right], \\
=\left(p_{1} p_{2} \ldots p_{i-1} p_{i+1} \ldots p_{k} z_{b_{i}-1}\right)-\left(p_{1} p_{2} \ldots p_{i-1} p_{i+1} \ldots p_{k} z_{b_{i}-1}\right)=0 . \tag{29}
\end{array}
$$

We show that after b_{i} iterations, $T_{n}\left(\frac{t}{q}\right)$ is eventually terminating to zero. Hence proved.
 the initial value is of the form $\frac{p}{q}$.

Proof: By definition of fixed point or period - 1 point we have the following:

$$
\begin{array}{r}
T_{n}(x)=x, \\
n x-[n x]=x, \\
n x-x=[n x], \\
x(n-1)=[n x], \\
x=\frac{[n x]}{n-1} . \tag{34}
\end{array}
$$

From lemma-2, if $x=\frac{p}{q}$ then $T_{n}^{k}(x)$ is eventually periodic. But for the following values of x, iterates of $T_{n}(x)$ gives period-1 orbit.

$$
\begin{equation*}
x=\left\{0, \frac{1}{n-1}, \frac{2}{n-1}, \ldots, \frac{n-2}{n-1}\right\} . \tag{35}
\end{equation*}
$$

There are in total ' $n-1$ ' fixed points and all of them are of the form $\frac{p}{q}$. Out of ' $n-1$ ' fixed points, there are ' $n-2$ ' fixed points of the form $\frac{p}{q}$ and which does not terminate to zero.

4 Main Proof

4.1 Proof by Contradiction of Infinitude of Primes

Assumption: Let us assume there are only finite number of primes and the set of finite number of primes be denoted as $P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$.

Now consider n as the product of all primes in the set P and q as follows:

$$
\begin{array}{r}
n=p_{1} p_{2} p_{3} \ldots p_{k} \\
q=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}} \tag{37}
\end{array}
$$

From Lemma $3, T_{n}\left(\frac{t}{q}\right)$ is eventually terminating to zero, $0 \leq t<q$. From Lemma 4, the fixed points of $T_{n}(x)$ are the form $\frac{k}{n-1}, 0 \leq k \leq n-2$.

Using Fundamental theorem of arithmetic, $n-1$ can be written as follows:

$$
\begin{equation*}
n-1=p_{1}^{r_{1}} p_{2}^{r_{2}} . . p_{k}^{r_{k}} . \tag{38}
\end{equation*}
$$

From Lemma 3, $T_{n}\left(\frac{k}{n-1}\right)=T_{n}\left(\frac{k}{p_{1}^{r_{1}} p_{2}^{r_{2}} . . p_{k}^{r_{k}}}\right)$ should actually terminate to zero. But from Lemma 4, there are ' $n-2$ ' fixed points of the form $\frac{p}{q}$ and not terminating to zero. Therefore the following relation is not true:

$$
\begin{equation*}
n-1=p_{1}^{r_{1}} p_{2}^{r_{2}} . . p_{k}^{r_{k}} . \tag{39}
\end{equation*}
$$

Hence the assumption that the number of prime numbers are finite is false.

References

[1] Kathleen T Alligood, Tim D Sauer, and James A Yorke. Chaos. Springer, 1996.
[2] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An introduction to the theory of numbers. John Wiley \& Sons, 1991.

